الگوی سطح پیرامونی یکپارچه رس و ماسه بر اساس مفاهیم حالت بحرانی و قانون اتساع عمومی
چکیده
در این مقاله بر اساس مفهوم سطح پیرامونی، یک الگوی رفتاری جهت مدلسازی یکپارچه رس و ماسه ارائه شده است. در این الگو از مفاهیم حالت بحرانی و پارامتر حالت استفاده شده است. به منظور شبیهسازی یکپارچه از هر دو خاک رس و ماسه، در این الگو یک قانون اتساع عمومی بکار گرفته شده است. این الگو از یک قانون جریان ناهمراه و یک قانون سختشوندگی همسانگرد استفاده میکند. به منظور پیادهسازی الگوی پیشنهادی از روش ضمنی اویلر بر اساس لگوریتم نگاشت بازگشتی استفاده شده است. با پیادهسازی الگو کارایی آن بوسیله آزمایشهای سه محوری یکنواخت بر روی رس و ماسه مورد ارزیابی قرار گرفت. بدین جهت، رفتار رس و ماسه تحت آزمایشهای سه محوری زهکشیشده و زهکشینشده یکنواخت مدلسازی شد و با دادههای آزمایشگاهی مقایسه گردید. نتایج شبیهسازی نشان میدهد که الگوی پیشنهادی به طور مناسبی میتواند رفتار نرم از حالت کشسان به خمیری، رفتار نرمشوندگی کرنشی، سختشوندگی، روانگرایی و انتقال فاز را برای رس و ماسه تحت بارگذاری یکنواخت پیشبینی نماید. همچنین نتایج به دست آمده نشان میدهد که روش ضمنی میتواند دقت و همگرایی بالای پاسخها را تضمین میکند.مراجع
Xu, T. H., & Zhang, L. M. (2015). Numerical implementation of a bounding surface plasticity model for sand under high strain-rate loadings in LS-DYNA. Computers and Geotechnics, 66, 203-218.
Pastor, M., Zienkiewicz, O. C., & Chan, A. H. C. (1990). Generalized plasticity and the modelling of soil behaviour. International Journal for Numerical and Analytical Methods in Geomechanics, 14(3), 151-190.
Chen, J. (2017). A monotonic bounding surface critical state model for clays. Acta Geotechnica, 12(1), 225-230.
Liu, H., Zou, D., & Liu, J. (2014). Constitutive modeling of dense gravelly soils subjected to cyclic loading. International Journal for Numerical and Analytical Methods in Geomechanics, 38(14), 1503-1518.
Roscoe, K. H., & Schofield, A. N. Mechanical Behaviour ofan idealised “Wet=Clay “.
Roscoe, K. H., Schofield, A., & Thurairajah, A. (1963). Yielding of clays in states wetter than critical. Geotechnique, 13(3), 211-240.
Pender, M. J. (1978). A model for the behaviour of overconsolidated soil. Geotechnique, 28(1), 1-25.
Chen, Y. N., & Yang, Z. X. (2017). A family of improved yield surfaces and their application in modeling of isotropically over-consolidated clays. Computers and Geotechnics, 90, 133-143.
Roscoe, K., & Burland, J. B. (1968). On the generalized stress-strain behaviour of wet clay.
Naylor, D. J. (1985). A continuous plasticity version of the critical state model. International journal for numerical methods in engineering, 21(7), 1187-1204.
Pastor, M., Zienkiewicz, O. C., & Leung, K. H. (1985). Simple model for transient soil loading in earthquake analysis. II. Non‐associative models for sands. International Journal for Numerical and Analytical Methods in Geomechanics, 9(5), 477-498.
Been, K., & Jefferies, M. G. (1985). A state parameter for sands. Géotechnique, 35(2), 99-112.
Nova, R., & Wood, D. M. (1979). A constitutive model for sand in triaxial compression. International Journal for Numerical and Analytical Methods in Geomechanics, 3(3), 255-278.
Jefferies, M. G. (1993). Nor-Sand: a simle critical state model for sand. Géotechnique, 43(1), 91-103.
Wroth, C. P., & Bassett, R. H. (1965). A stress–strain relationship for the shearing behaviour of a sand. Geotechnique, 15(1), 32-56.
Jocković, S., & Vukićević, M. (2017). Bounding surface model for overconsolidated clays with new state parameter formulation of hardening rule. Computers and Geotechnics, 83, 16-29.
Jian, L. I., Chen, S., & Jiang, L. (2016). On implicit integration of the bounding surface model based on swell–shrink rules. Applied Mathematical Modelling, 40(19-20), 8671-8684.
Khalili, N., Habte, M. A., & Valliappan, S. (2005). A bounding surface plasticity model for cyclic loading of granular soils. International journal for numerical methods in engineering, 63(14), 1939-1960.
Schädlich, B., & Schweiger, H. F. (2014). Modelling the shear strength of overconsolidated clays with a Hvorslev surface. geotechnik, 37(1), 47-56.
Tsiampousi, A., Zdravković, L., & Potts, D. M. (2013). A new Hvorslev surface for critical state type unsaturated and saturated constitutive models. Computers and Geotechnics, 48, 156-166.
Yao, Y. P., Hou, W., & Zhou, A. N. (2009). UH model: three-dimensional unified hardening model for overconsolidated clays. Geotechnique, 59(5), 451-469.
Bardet, J. P. (1986). Bounding surface plasticity model for sands. Journal of engineering mechanics, 112(11), 1198-1217.
Ling, H. I., & Yang, S. (2006). Unified sand model based on the critical state and generalized plasticity. Journal of Engineering Mechanics, 132(12), 1380-1391.
Manzari, M. T., & Dafalias, Y. F. (1997). A critical state two-surface plasticity model for sands. Geotechnique, 47(2), 255-272.
McDowell, G. R., & Hau, K. W. (2004). A generalised Modified Cam clay model for clay and sand incorporating kinematic hardening and bounding surface plasticity. Granular Matter, 6(1), 11-16.
Borja, R. I. (1991). Cam-Clay plasticity, Part II: Implicit integration of constitutive equation based on a nonlinear elastic stress predictor. Computer Methods in Applied Mechanics and Engineering, 88(2), 225-240.
Yu, H. S. (1998). CASM: A unified state parameter model for clay and sand. International journal for numerical and analytical methods in geomechanics, 22(8), 621-653.
Yu, H. S., & Khong, C. D. (2003). Bounding surface formulation of a unified critical state model for clay and sand. In Deformation Characteristics of Geomaterials/Comportement Des Sols Et Des Roches Tendres (pp. 1130-1137). CRC Press.
Fincato, R., & Tsutsumi, S. (2017). Closest-point projection method for the extended subloading surface model. Acta Mechanica, 228(12), 4213-4233.
Hu, C., & Liu, H. (2014). Implicit and explicit integration schemes in the anisotropic bounding surface plasticity model for cyclic behaviours of saturated clay. Computers and Geotechnics, 55, 27-41.
Rouainia, M., & Muir Wood, D. (2001). Implicit numerical integration for a kinematic hardening soil plasticity model. International Journal for Numerical and Analytical Methods in Geomechanics, 25(13), 1305-1325.
Manzari, M. T., & Nour, M. A. (1997). On implicit integration of bounding surface plasticity models. Computers & structures, 63(3), 385-395.
]33[ مقدم سیدایمان، طاهری احسان، احمدی مرتضی (1397). "مدلسازی رفتار خاک با استفاده از مدل یکپارچه رس و ماسه به روش ضمنی اویلر". هفتمین کنفرانس مهندسی معدن ایران و پنجمین کنگره بینالمللی معدن و ضنایع معدنی ایران، تهران.
]34[ مقدم سیدایمان، طاهری احسان، احمدی مرتضی، قریشیان امیری سیدعلی (1397). "پیشبینی رفتار روانگرایی در خاک ماسهای با استفاده از مدل یکپارچه به روش ضمنی". کنفرانس بینالمللی عمران، معماری و مدیریت توسعه شهری در ایران، تهران.
Moghadam, S.I., Taheri, E., Ahamdi, M., Ghoreishian Amiri, S.A. (2019). “Application of Unified Clay and Sand Cyclic Model in the Simulation of Tunneling,” J. Geotech. Asp., vol. 1(1): 32-4.
E. Taheri and S. A. Sadrnejad, (2010). “Prediction of Internal Mechanism of Soil upon Multiplane Framework,” The 4th International Conference on Geotechnical Engineering and Soil Mechanics,
November 2-3, Tehran, Iran.
Moghadam, S.I., Taheri, E., Ahamdi, M., Ghoreishian Amiri, S.A. (2019). “Novel Implicit Integration Scheme on Bounding Surface Plasticity in the Unified Model,” 14th Int. Conf. Undergr. Constr., Prague.
Li, X. S., & Dafalias, Y. F. (2000). Dilatancy for cohesionless soils. Geotechnique, 50(4), 449-460.
Hashiguchi, K. (2017). Foundations of elastoplasticity: subloading surface model. New York: Springer.
Yu, H. S. (2007). Plasticity and geotechnics (Vol. 13). Springer Science & Business Media.
Dafalias, Y. F., & Popov, E. P. (1975). A model of nonlinearly hardening materials for complex loading. Acta mechanica, 21(3), 173-192.
Hashiguchi, K., & Chen, Z. P. (1998). Elastoplastic constitutive equation of soils with the subloading surface and the rotational hardening. International Journal for Numerical and Analytical Methods in Geomechanics, 22(3), 197-227.
Hashiguchi, K. (1989). Subloading surface model in unconventional plasticity. International Journal of Solids and Structures, 25(8), 917-945.
Dafalias, Y. F. (1981). The concept and application of the bounding surface in plasticity theory. In Physical non-linearities in structural analysis (pp. 56-63). Springer, Berlin, Heidelberg.
Hu, C., & Liu, H. (2015). A new bounding-surface plasticity model for cyclic behaviors of saturated clay. Communications in Nonlinear Science and Numerical Simulation, 22(1-3), 101-119.
Dafalias, Y. F., & Herrmann, L. R. (1986). Bounding surface plasticity. II: Application to isotropic cohesive soils. Journal of Engineering Mechanics, 112(12), 1263-1291.
Gao, Z., Zhao, J., & Yin, Z. Y. (2016). Dilatancy relation for overconsolidated clay. International Journal of Geomechanics, 17(5), 06016035.
Taylor, D. W. (1948). Fundamentals of soil mechanics (Vol. 66, No. 2, p. 161). LWW.
Rowe, P. W. (1962). The stress-dilatancy relation for static equilibrium of an assembly of particles in contact. Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences, 269(1339), 500-527.
Li, X. S. (1997). Modeling of dilative shear failure. Journal of geotechnical and geoenvironmental engineering, 123(7), 609-616.
Li, X. S. (2002). A sand model with state-dapendent dilatancy. Géotechnique, 52(3), 173-186.
Li, X. S., Dafalias, Y. F., & Wang, Z. L. (1999). State-dependant dilatancy in critical-state constitutive modelling of sand. Canadian Geotechnical Journal, 36(4), 599-611.
Pestana, J. M., Whittle, A. J., & Gens, A. (2002). Evaluation of a constitutive model for clays and sands: Part II–clay behaviour. International journal for numerical and analytical methods in geomechanics, 26(11), 1123-1146.
Bishop, A. W., & Henkel, D. J. (1962). The measurement of soil properties in the triaxial test.
Seed, H. B., & Lee, K. L. (1967). Undrained strength characteristics of cohesionless soils. Journal of Soil Mechanics & Foundations Div.
Lee, K. L., & Seed, H. B. (1967). Drained strength characteristics of sands. Journal of Soil Mechanics & Foundations Div.