شبیه سازی نفوذ پرتابه صلب با سرعت بالا در توده سنگ با استفاده از روش المان مجزا با قابلیت جریان-ذرات

نویسندگان

  • مرتضی رحیمی دیزجی دانشکده مهندسی معدن و متالورژی دانشگاه صنعتی امیرکبیر
  • آلان شوکتی دانشکده مهندسی، گروه مهندسی معدن، دانشگاه کردستان
  • احمد فهیمی فر دانشکده مهندسی عمران و محیط زیست، دانشگاه صنعتی امیرکبیر

چکیده

در این مقاله نفوذ پرتابه صلب مخروطی با سرعت بالا در توده‌سنگ با استفاده از روش المان مجزای سه‌بعدی با قابلیت جریان ذرات شبیه‌سازی شد. بمنظور شبیه‌سازی توده‌سنگ و پرتابه، المان‌های کروی مجزا بکارگیری شده و بمنظور اتصال ذرات کروی از مدل رفتاری پیوند موازی با قابلیت انتقال نیرو و ممان استفاده شد. مقادیر ریزپارامترهای مدل پیوند موازی با انجام شبیه‌سازی‌های عددی آزمایش فشاری تک محوری توده‌سنگ کالیبره شد. در شبیه‌سازی‌ برخورد پرتابه برای توده‌سنگ ساختگاه مغار نیروگاه بختیاری به خوبی خرد شدن توده‌سنگ و پرتاب قطعات آن با سرعت بالا مدلسازی شد. نتایج نشان داد که تنش‌های فشاری و برشی بزرگی در اثر برخورد به توده‌سنگ القا می‌شود. تاثیر پارامترهایی همچون سرعت اولیه پرتابه، شکل دماغه، وزن و نسبت لاغری (قطر/طول) آن بر نفوذ پرتابه نیز بررسی شد. جهت اعتبارسنجی روش مورد استفاده نتایج با روابط تحلیلی مقایسه شد که تطابق بسیار خوبی بین نتایج ملاحظه گردید.

بیوگرافی نویسندگان

مرتضی رحیمی دیزجی، دانشکده مهندسی معدن و متالورژی دانشگاه صنعتی امیرکبیر

دانشجوی دکتری

آلان شوکتی، دانشکده مهندسی، گروه مهندسی معدن، دانشگاه کردستان

استادیار

احمد فهیمی فر، دانشکده مهندسی عمران و محیط زیست، دانشگاه صنعتی امیرکبیر

استاد

مراجع

Shiu, W., Donze, F.V. & Daudeville, L. (2008). Penetration prediction of missiles with different nose shapes by the discrete element numerical approach, Journal of Computers & Structures, 86, pp. 2079-2086

Young, C.W., (1972). Empirical Equations for Predicting Penetration Performance in Layered Earth Materials for Complex Penetrator Configurations, National Technical Reports Library, U.S. Department of Commerce, pp. 50

Young, C.W., (1976). Development of empirical equations for predicting depth of an earth penetrating projectile, U.S. Department of Energy, pp. 40

Bernard, R. S., (1977). Empirical Analysis of Projectile Penetration in Rock. United States: pp. 23

Forrestal, M.J., Altman, B.S., Cargile, J.D. & Hanchak, S.J., (1994). An empirical equation for penetration depth of Ogive-nose projectiles into concrete target, Int. J. Impact Eng., 15(4), pp. 395–405.

Bernard, R.S., (1978). Depth and Motion Prediction for Earth Penetrators, United States, pp. 31

Chang, WS. (1981). Impact of solid missiles on concrete barriers, J Struct Div ASCE, 107(ST2), pp. 257–71

Hughes, G. (1984). Hard missile impact on reinforced concrete, Nucl Eng Des, 77, pp. 23–35

Kojima, I. (1991). An experimental study on local behaviour of reinforced concrete slabs to missile impact”, Nucl Eng Des, 130, pp. 121–32.

Rosenberg, Z. & Dekel, E., (2016). Terminal Ballistics, Second Edition, Springer Science Business Media Singapore

Ben-Dor, G., Dubinsky, A. & Elperin, T., (2013). High-speed penetration dynamics: engineering models and methods, World Scientific Publishing Co. Pte. Ltd., Singapore

Feldgun, V.R., Yankelevsky, D.Z. & Karinski, Y.S. (2017). A New Simplified Analytical Model for Soil Penetration Analysis of Rigid Projectiles Using the Riemann Problem Solution, International Journal of Impact Engineering, 101, pp. 49–65

Warren, T.L., Hanchak, S.J. & Poormon K.L. (2004). Penetration of limestone targets by ogive-nosed VAR 4340 steel projectiles at oblique angles: experiments and simulations, Int J Impact Eng, 30(10), pp. 1307-31.

Forrestal, M.J., Longscope, D.B. & Norwood, FR. (1981). A model to estimate forces on conical penetrators into dry porous rock, J Appl Mech, ASME, 48, pp. 25–9

Forrestal, M.J. & Longscope, D.B. (1982). Closed-form solutions for forces on conical-nosed penetrators into geological targets with constant shear strength, Mechanics of Materials, 1, pp. 285-295

Siddiqui, N.A., Choudhury, H. & Abbas, H. (2002). Reliability analysis of projectile penetration into geological targets. Reliability Eng & System Safety, 78, pp. 13–19.

Vorobiev, O.Yu., Liu, B.T., Lomov, I. & Antoun, T.H. (2007). Simulation of penetration into porous geologic media” International Journal of Impact Engineering, 34(4), pp. 721–731

Forrestal M.J. & Luk., VK. (1992). Penetration into soil targets, International Journal of Impact Engineering, 12(3), pp. 427-444

Forrestal, M.J., Frew, D.J., Hanchak, S.J. & Bar, NS. (1996). Penetration of grout and concrete target with ogive-nose steel projectiles, Int J Impact Engng, 18(5), pp. 465–76

Forrestal, M.J. & Tzou, D.Y. (1997). A spherical cavity-expansion penetration model for concrete targets, International Journal of Solids Structures, 34(31-32), pp. 4127-4146

Yankelevsky, D.Z. (1997). Local response of concrete slabs to low velocity projectile impact, Int J Impact Engng, 19(4), pp. 331–43

Frew, D.J., Hanchak, S.J., Green, M.L. & Forrestal, M.J. (1998). Penetration of concrete target with ogive-nose steel rods, Int J Impact Engng, 21(6), pp. 489–97

Forrestal, M.J., Frew, D.J., Hickerson, J.P. & Rohwer, TA. (2003). Penetration of concrete targets with deceleration-time measurements, Int J Impact Eng, 28(5), pp. 479-97

Frew, D.J., Forrestal, M.J. and Cargile, J.D. (2006). The effect of concrete target diameter on projectile deceleration and penetration depth, Int J Impact Eng, 32(10), pp.1584-94

Wu, H., Fang, Q., Zhang, Y.D. and Gong, ZM. (2012). Semi-theoretical analyses of the concrete plate perforated by a rigid projectile, Acta Mech Sin, 28(6), pp. 1630-43

Chen, X.W., Li, X.L., Huang, F.L., Wu, H.J. & Chen, Y.Z. (2008). Normal perforation of reinforced concrete target by rigid projectile, Int J Impact Eng, 35(10), pp. 1119-2

Wu, H., Fang, Q., Peng, Y., Gong, Z.M. & Kong, X.Z. (2015). Hard projectile perforation on the monolithic and segmented RC panels with a rear steel liner, Int J Impact Eng, 76, pp. 232-50

Peng. Y., Wu, H., Fang, Q., Gong, Z.M. & Kong, X.Z. (2015). A note on the deep penetration and perforation of hard projectiles into thick targets, International Journal of Impact Engineering, 85, pp. 37-44

Huang, F., Wu, H., Jinb, Q. & Zhang, Q. (2005). A numerical simulation on the perforation of reinforced concrete targets, Int J Impact Eng, 32(1‐4), pp. 173‐187

Tham, C. Y. (2006). Numerical and empirical approach in predicting the penetration of a concrete target by an ogive‐nosed projectile, Finite Elements in Analysis and Design, 42(14‐15), pp. 1258‐1268

Pi, A. and Huang, F. (2007). Based on Variation Method for the Shape Optimization of Penetrator Nose Shape, Danjian Zhidao Xuebao, 27(4), pp. 126-130

Wang, Zh., Li, Y., Shen, R.F. & Wang, J.G. (2007). Numerical study on craters and penetration of concrete slab by ogive-nose steel projectile, Computers and Geotechnics, 34, pp. 1–9

Brun, M., Combescure, A., Baillis, C., Limam, A. & Buzaud, E. (2008). Simulations of the penetration of limestone targets using two-dimensional multimodal Fourier analysis, International Journal of Impact Engineering, 35, pp. 251–268

Liu, Y., Huang, F. & Ma, A. (2011). Numerical simulations of oblique penetration into reinforced concrete targets”, Computers and Mathematics with Applications, 61, pp. 2168–2171

Fang, Q. & Zhang, J. (2014). 3D numerical modeling of projectile penetration into rock-rubble overlays accounting for random distribution of rock-rubble, International Journal of Impact Engineering, 63, pp. 118-128

Cundall, P.A. & Strack, O.D.L. (1979). A discrete numerical model for granular assemblies, Géotechnique, 29(1), pp. 47–65

Chen, S.G. & Zhao, J. (1998). A study of UDEC modelling for blast wave propagation in jointed rock masses, Int. J. Rock Mech.& Min. Sci., 35(1), pp. 93-99

Riera, J.D. & Iturrioz, I. (1998) .Discrete elements model for evaluating impact and impulsive response of reinforced concrete plates and shells subjected to impulsive loading, Nucl Eng Des, 179(2), pp. 135–44

Iwashita, K. & Oda, M. (2000). Micro-deformation mechanism of shear banding process based on modified distinct element method, Powder Technology, 109, pp. 192–205

Hentz, S., Daudeville, L. & Donzé, F.V. (2004). Identification and validation of a discrete element model for concrete, J Eng Mech, 130(6), pp. 709–19

Morris, J.P., Rubin, M.B., Blair, S.C., Glenn, L.A. & Heuze, F.E. (2004). Simulations of underground structures subjected to dynamic loading using the distinct element method, Engineering Computations, 21, pp. 384-408

Bulson, P.S., (1997). Explosive loading of engineering structures, E & FN Spon press

Gran, J.K., Senseny, P.E., Groethe, M.A., Chitty, D. & Trulio, J. (1998). Dynamic response of an opening in jointed rock, Int. J. of Rock Mech. & Mining Sci., 35(8), pp. 1021-1035

Jiao, Y.Y., Zhang, X.L., Zhao, J., Q.S. & Liu, Q.S. (2007). Viscous boundary of DDA for modeling stress wave propagation in jointed rock, Int. J. Rock Mech. & Mining Sci., 44, pp. 1070–1076.

Wang, Z., Li, Y. & Wang, J.G. (2008). Numerical analysis of blast-induced wave propagation and spalling damage in a rock plate, Int. J. Rock Mech. Min. Sci., 45, pp. 600-608

Itasca Consulting Group, (2005). PFC3D (Particle Flow Code in 3 Dimensions) User's Manual, Minneapolis, Minnesota

Chen, X.W. & Li, Q.M. (2002). Deep penetration of a non-deformable projectile with different geometrical characteristics, Int. J. Impact Eng., 27, pp. 619-637

##submission.downloads##

چاپ شده

2022-02-26

شماره

نوع مقاله

مقالات